Reflection about line x = 0 is **horizontal**, so replace $x \to -x$. Then, for horizontal translation, replace $x \rightarrow x + 3$, giving us y = f[-(x + 3)] which simplifies to y = f(-x - 3).

ANSWER: D

- NR #1 For g(x), the transformation is to take all points on f(x) and
 - Horizontally shift 2 left So subract 2 from all x-coords
 - Vertically shift k up So add "k" to all y-coords

The DOMAIN of
$$f(x) = \sqrt{x+3} - 1$$
 is...

Can't sq root $x+3 \ge 0$

negatives $x \ge -3$
 $x \ge -5$

The RANGE of
$$f(x) = \sqrt{x+3} - 1$$
 is...

Basic graph of $y = \sqrt{x}$ $y \ge -1$ shift "k" up

shifted 1 down

Simplifies to: $y \ge k - 1$

ANSWER: 94

NR #2 Apply vert. str. factor of 3 to Then, apply vert. shift up 2 to $y = 2x^2 + 1$, to get

 $y = 3(2x^2 + 1)$

get
$$y = 6x^2 + 3 + 2$$

 $y = 6x^2 + 5$

$$y = 3(2x^2 + 1)$$

 $y = 6x^2 + 3$

ANSWER: 65

Transformations for g(x) are a vertical reflection (replace $y \rightarrow -y$) a vertical stretch, and a vertical shift one unit up.

So all pts $(x, y) \rightarrow (x, -2y + 1)$

Now, the RANGE of f(x) (shown) is $[-4, \infty)$

Which on
$$g(x)$$
 becomes $(-\infty, 9]$
ANSWER: A
 $(-2)(-4) + 1$

Transformations for h(x) are a horizontal stretch, factor of 2, and a horiz. translation 4 units right.

*remember to first FACTOR: $h(x) = f\left[\frac{1}{2}(x-4)\right]$

Now, the DOMAIN of f(x) (shown) is $[-5, \infty)$

Which on g(x) becomes $[6, \infty)$ ANSWER: C

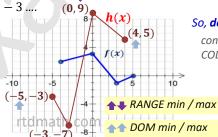
The largest x-intercept on h(x) is -1. After a horiz. str. factor of 2 and shift 4 right, that becomes

NR #3

Jagmeet sketches the graph of h(x) = 4f(-x) - 3

All pts $(x, y) \rightarrow (-x, 4y - 3)$ First (farthest left) pt 4(2) - 3on graph of f(x) = -(-4)

Plot each of these points! $(0,3) \rightarrow (0,9)$ $(3,-1) \rightarrow (-3,-7)$ $(5,0) \rightarrow (-5,-3)$



So, **domain** is [-5,4] and **range** is [convert to CODES

ANSWER: 3429

- On f(x) the x-coord of P is 3 Horiz. str by a factor of 3 changes this to 9 (3)(3)Then horiz. shift 9 units right changes this to m=18ANSWER: D
- The domain of f(x) is $x \ge 9$ **Think:** Basic graph of $y = \sqrt{x}$ (domain $x \ge 0$) shifted 9 units right

Then we apply the mapping rule

3(9) - 6 to get $x \ge 21$ ANSWER: C

The total width of f(x) is **6** units. (x = 2 to x = 8)The total width of g(x) is **1.5** units. (x = 0.5 to x = 2)→ Therfore g(x) is 1/4th as wide $(1.5 \div 6)$ **HORIZ STR. FACTOR OF 1/4 b** value in equation is 4 (reciprocal)

An equation for k(x) can be found by replacing, in the equation for f(x)

 $x \text{ with } \frac{1}{3}x \text{ expression } \frac{1}{3}x \text{}$ $\frac{1}{3}x \to \frac{1}{3}(x-9)$ $\frac{1}{3}x \to \frac{1}{3}(x-9)$ RTD 1 xanthen, in the resulting Replacing x with x-9

factor of 3

So net effect: $k(x) = f\left[\frac{1}{3}(x-9)\right]$ ANSWER: B

The total height of f(x) is **3** units. (y = 0 to y = 3)

The total height of g(x) is **9** units. (y = 2 to y = 11)

→ Therfore g(x) is 3 times "taller" VERT STR. FACTOR OF 3 BUT there is also a vertical shift, k.

Think: g(x) "should" have invariant points on the x-axis, from the vertical stretch. (at the MIN)

However the MIN y-value of g(x) is 2

ANSWER: A

 \rightarrow Therfore k is 2 units up

Reflection about line x = 0 replace $x \to -x$. AND Reflection about line y = 0 / think of one of two ways. Either replace $y \rightarrow -x$ or make the entire expression negative.

$$g(x) = -[2(-x)^2 - 3(-x) + 5]$$

(include square brackets around all terms)

$$g(x) = -[2x^2 + 3x + 5]$$

$$g(x) = -2x^2 - 3x - 5$$

ANSWER: A

NR #5

Many options! Use the "furthest left" point on each graph.

On f(x) the furthest left point is 6 horiz. units from the y-axis, on g(x) it's **9 horiz. units**.

→ Horiz. str, factor of 9/6 reduces to $\frac{3}{2}$

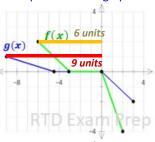
On f(x) the highest point is **2** vert. units from the x-axis, on g(x) it's **1 unit**.

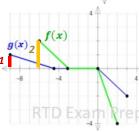
→ vert. str, factor of

$$SO...a = \frac{1}{2} < m$$
(vert str.)

$$AND...b = \frac{2 < p}{3 < q}$$

(reciprocal of horiz. str)





ANSWER: 1223

NR #4

Start with f(x) DOMAIN is $[-2, \infty)$ and RANGE"left to right" "bottom to top" is $[-4, \infty)$

 $\Leftrightarrow g(x)$ involves a Vert. Str, factor of 3/2, a horiz. reflection, and a shift 2 right and 2 up.

All pts
$$(x, y) \rightarrow (-x - 2, \frac{3}{2}y + 2)$$
affects **domain** affects **range**

DOMAIN of g(x) -(-2) - 2 $\Rightarrow x \le 0$ REF. #1 (reverse direction / graph points LEFT now)

RANGE of
$$g(x)$$
 $\frac{3}{2}(-4) + 2 \implies y \ge -4$ REF. #7

h(x) is the INVERSE, $(x,y) \to (y,x)$ Domain and range **switch**

DOMAIN of
$$h(x) \Rightarrow x \ge -4$$
 REF. # 5 the RANGE of $f(x)$

RANGE of
$$h(x)$$
 \Rightarrow $y \ge -2$ REF. #8

the DOMAIN of $f(x)$

ANSWER: 1758

First apply vertical reflection

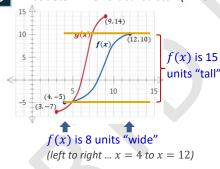
$$= -[2x^2 + 3x - 5] - in front of entire expression$$
$$= -2x^2 - 3x + 5$$

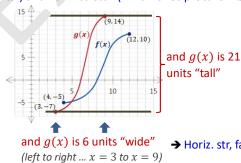
Then apply horiz shift 1 left Replace x $= -2(x+1)^2 - 3(x+1) + 5$ with "x + 1" $=-2(x^2+2x+1)-3x-3+5$ $=-2x^2-4x-2-3x+2$

ANSWER: B $=-2x^2-7x$

NR #6

First determine vertical stretch (which is "a") and horiz. stretch (which is reciprocal of "b")





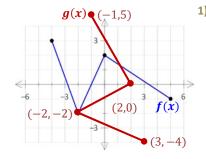
→ Vert. str, factor of 21/15 Decimal form is 1.4

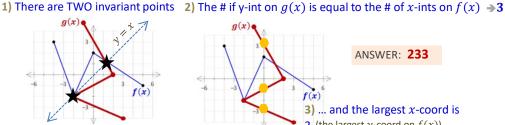
ANSWER: 1408

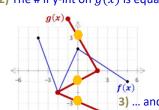
→ Horiz. str, factor of 6/8 Decimal form rounds to 0.8

NR #7

The graph of g(x) can be obtained by switching all coordinates $(x,y) \rightarrow (y,x)$







ANSWER: 233

3) ... and the largest x-coord is 3 (the largest y-coord on f(x))

11. Switch x and y, then isolate y

first re-write f(x) in terms of y

$$v = \sqrt{x+4} - 1$$

square both sides

$$x = \sqrt{y+4} - 1 \implies x+1 = \sqrt{y+4} \implies (x+1)^2 = (\sqrt{x+4})^2$$

$$(x+1)^2 = y+4$$
 \Rightarrow $y = (x+1)^2 -$

⇒
$$(x+1)^2 = y+4$$
 ⇒ $y = (x+1)^2 - 4$ ANSWER: **B**

And the $g(x)$ is 1

Range of f(x) is $y \ge -1$ f(x)So domain of g(x) is $x \ge -1$ Graph is a "half-parabola"

The domain of g(x) is the range of f(x)

And the *y*-int of g(x) is y = -3

(The x-int of f(x))

ANSWER: A

(-4, 1)

WR Question 1

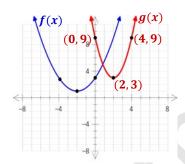
(a) Vert. str. by factor of 3, then vert. translation 4 units right

$$(x,y) \rightarrow (x+4.3y)$$

$$(-4,3) \rightarrow (0,9)$$

$$(-2,1) \rightarrow (2,3)$$

$$(0,3) \rightarrow (4,9)$$



(b) Equation of
$$f(x)$$
.... $y = a(x + 2)^2 + 1$

$$y \equiv a(x+2)^2$$

Use any other pt on the graph to solve for a (Such as (0,3)!)

$$\Rightarrow$$
 (3) = $a((0) + 2)^2 + 1$

$$\Rightarrow$$
 2 = $a(2)^2$

$$\Rightarrow a = \frac{2}{4} \Rightarrow a = \frac{1}{2}$$

So, equation of f(x) is

$$f(x) = \frac{1}{2}(x+2)^2 + 1$$

For equation of g(x) we could use a similar method (sub in vertex then solve for "a")

OR we could simply apply the transformations to the equation of f(x)....

$$g(x) = 3 \left[\frac{1}{2} ((x - 4) + 2)^2 + 1 \right]$$
horiz. translation 4 righ

Vert. str, factor of 3

So, equation

$$g(x) = \frac{3}{2}(x-2)^2 + 3$$

(c) Here we saw that horizontally tranlating the vertex 4 right achieved the same result as horizontally reflecting the graph of y = f(x).

This can be verified by applying the horiz. reflection to the equation of y = f(x)

$$y = \frac{1}{2}((-x) + 2)^2 + 1$$
 $\Rightarrow y = \frac{1}{2}(-x + 2)^2 + 1$ $\Rightarrow y = \frac{1}{2}[-1(x - 2)]^2 + 1$ Then factor out a "-1" from inside the brackets

$$\Rightarrow y = \frac{1}{2}(-x+2)^2 + \frac{1}$$

$$\Rightarrow y = \frac{1}{2}[-1(x-2)]^2 +$$

for horiz. reflection

Replace "x" with "-x"
$$\Rightarrow y = \frac{1}{2}(-1)^2(x-2)]^2 + 1 \Rightarrow y = \frac{1}{2}(x-2)]^2 + 1$$
 Same resulting equation as replacing "x" with "x - 4"!

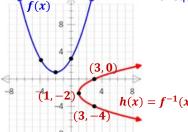
$$y = \frac{1}{2}(x-2)^2 + \frac{1}{2}(x-2)^2 +$$

(c) For graph of y = h(x), (inverse) switch all points $(x,y) \rightarrow (y,x)$

$$(-4,3) \rightarrow (3,-4)$$

$$(-2,1)\rightarrow (1,-2)$$

$$(0,3) \rightarrow (3,0)$$



For equation of y = h(x), switch x and y in the equation and isolate y.

$$y = \frac{1}{2}(x+2)^2 + 1$$

$$x = \frac{1}{2}(y+2)^2 + 1$$

$$x - 1 = \frac{1}{2}(y + 2)^2$$

$$2(x-1) = (y+2)^2$$

 $x = \frac{1}{2}(y+2)^{2}+1$ $x = \frac{1}{2}(y+2)^{2}+1$ $x = \frac{1}{2}(y+2)^{2}+1$ $x = \frac{1}{2}(y+2)^{2}$ $x = \frac{1}{2}(y+2)^{2}$ $y = \pm\sqrt{2(x-1)}-2$

$$h(x) = \pm \sqrt{2(x-1)} - 2$$

NOTE: without the "±", graph would only be a (sideways) half-parabola

(a) Vert. str. by factor of ¾, then vert. translation 6 units down

Next, vert shift 6 down...

$$y = \frac{3}{4}(2x^2 + 4x + 8)$$
 $\Rightarrow y = \frac{6}{4}x^2 + \frac{12}{4}x + \frac{24}{4}$ $\Rightarrow y = \frac{3}{2}x^2 + 3x + 6$ $\Rightarrow y = \frac{3}{2}x^2 + 3x + 6 - 6$ $\Rightarrow g(x) = \frac{3}{2}x^2 + 3x$

- **2** On f(x) vertex is (4,2), then on g(x) its (1,2) horiz. shift 3 left
 - sign is outside for **vertical reflection**, which would make the *y*-coord of the vertex -2. However, on g(x) the y-coord is 2. So graph must also have been vertically translated 4 units up.

 \Rightarrow $(x,y) \rightarrow (x-3,-y+4)$

§ From mapping rule $(x,y) \rightarrow (2x,y)$ we can see that a horiz str, factor of ½ was applied Check on your calc!

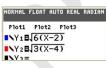
So, working backward from g(x) to f(x), we should apply a horiz str, factor of 2.

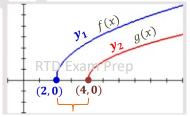
$$f(x) = \sqrt{3(2x-4)}$$
 Replace x with $2x$ in $g(x)$

$$f(x) = \sqrt{3 * 2(x-2)}$$
 Factor out the **2** "inside"

$$f(x) = \sqrt{6(x-2)}$$

 $f(x) = \sqrt{6(x-2)}$ or, alternatively $f(x) = \sqrt{6x-12}$





Horiz. str, factor of 2 (works!)

(b) RANGE of f(x) is $\{y \in \mathbb{R}\}$ since f(x) is a third degree (odd) polyomial function... can also be determined by graphing

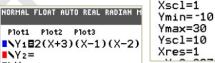
x-intercepts of f(x) are x = -3, x = 1, and x = 2

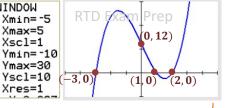
Can be determined from factors or by graphing

$$f(x) = 2(x+3)(x-1)(x-2)$$

$$x = -3 \quad x = 1 \quad x = 2$$

NORMAL FLOAT AUTO REAL RADIAN M Plot1 Plot2 Plot3





This is all for f(x), the original function!

MINDOM

Xmax=5

y-intercept of f(x) is y = 12

Set x = 0 ... $f(0) = 2(\mathbf{0} + 3)(\mathbf{0} - 1)(\mathbf{0} - 2)$ NOW, mapping rule here is $(x, y) \rightarrow (-x, 3y)$ (horiz refl, vert. str. of 3)

So....x-intercepts of g(x) are x = -2, x = -1, and x = 3Each becomes negative of original x-int.

The y-intercept of g(x) is y = 9 Mult. y-int. of f(x), which is 12, by 3/4

The RANGE of g(x) is $\{y \in \mathbb{R}\}$ No change to RANGE of f(x), since it's all reals!

NOTE: We need not find an equation for g(x) (though you may to help justify your answers)