Math 30-1 - Sinusoidal Curves (plus tangent graphs) PRACTICE ASSIGNMENT

PART A - Riding the Wheel

Refer to PRACTICE QUESTION #8 from your Trig I class handout, on the height of a Ferris Wheel. (I have uploaded a complete solution to the question, a link is on D2L right where you found the link to this assignment)

- 1. Before starting here <u>complete the question</u> in your own notes / the Trig handout Topic 5 Practice Question 8. (Again, use solution posted online for reference, do the work in your booklet)
- 2. In the space provided below, sketch the resulting function if the following changes are made
 - The maximum height of the Ferris Wheel is 25m. (the min height is still 1m)
 - The Ferris Wheel completes a rotation every 36s. (instead of 30s)

*Be sure to fully label each axis and provide a scale.

3. Determine an equation of the function you graphed, in the form y = asin[b(x-c)] + d and y = acos[b(x-c)] + d. Show all steps / reasoning.

- 4. Use your equation to predict the height after 15 seconds.
- 5. Use your graphing calculator to predict the percentage of time that a person's height on the Ferris wheel would be 20m or more. Explain your process.

PART B – Winnipeg Temperatures

For this part of the assignment, you will determine the values of a, b, c and d for both a sine and cosine equation to model the following data. (Assume 365 days in a year) You will start by scaling the graph below, labeling each axis, and **plotting all of the points** represented by the data.

AVERAGE DAILY TEMPERATURE OF WINNIPEG THROUGHOUT THE YEAR

AVLINAGE DE						
Day#	Ave Temp					
1	-14.3					
24	-20.7					
49	-16.8					
58	-15.0					
70	-10.6					
89	-4.1					
104	3.4					
110	7.2					
	Day # 1 24 49 58 70 89 104					

Date	Day#	Ave Temp				
May 9	129	11.5				
May 31	151	15.8				
June 11	162	18.5				
July 1	182	22.1				
July 27	208	24.4				
Aug 11	223	19.4				
Aug 28	240	17.6				

Date	Day #	Ave Temp				
Sept 15	258	12.9				
Oct 1	274	7.7				
Oct 17	290	5.0				
Nov 16	320	-7.6				
Nov 22	325	-12.2				
Dec 4	338	-15.8				
Dec 25	359	-17.9				

1. In Winnipeg, the COLDEST day, on average, is January 24, with a temperature of -20.7 °C. The WARMEST day, on average, is July 27, with a temperature of 24.4 °C. Plot two points with an "x" on the graph below illustrating these facts, and label on the x and y axis. (Fully label each axis / provide a scale)

- 2. Plot the remaining points (use dots •, approximate their position) given by the data, and construct a smooth, sinusoidal curve that best represents the data. (NOTE: Your curve will not contain all of the points. It is merely a "curve of best fit"!)
- 3. Using the formulas and methods developed in class, determine the values of a, b, c and d for a sinusoidal equation in the form: $y = a \sin[b(x c)] + d$ and $y = a \cos[b(x c)] + d$.
 - Note that you will using the max and min points (marked by an X) to determine these values.
 - Draw a pair of dashed horizontal lines representing the "c" values for sine and cosine.

4.	Write both a sine and cosine equation that models the average daily temperature in Winnipeg, <i>T</i> , as a function of the day of the year, <i>n</i> .
5.	Use each equation to predict the average temperature in Winnipeg on April 1. Sine Equation Cosine Equation
6.	Use your sine equation and a graphing method to determine the approximate number of days the average temperature in Winnipeg should be above 15°C. Explain your process.
7.	Environmentalists predict that the average temperature in Winnipeg will increase by 2°C over the next 15 years. Assuming that increase is applicable throughout the year, which of the values of a, b, c, or d in your sinusoidal equations will change? Explain.

PART C – The TANGENT GRAPH

On your formula sheet it can be seen that $tan\theta = \frac{sin\theta}{cos\theta}$.

- 1. On the grid on the left, sketch the graph of $\mathbf{0}$ y = cosx
- 2. Since $tanx = \frac{sinx}{cosx}$, the graph of y = tanx will have a **vertical** asymptote wherever cosx = 0. On your graph draw dotted lines representing vertical asymptotes wherever the graph of y = cosx is zero. (That is, at any x-intercepts)
- 3. Since $tanx = \frac{sinx}{cosx}$, the graph of y = tanx will have an x —intercept wherever sinx = 0. On your graph plot points on the x-axis representing where sinx (and therefore cosx) is equal to zero.
- 4. Use your graphing calculator (or an online tool like desmos) to complete the rest of your graph. Fill out the table below.

Angle Measure	0°	45°	90°	135°	180°	225°	270°	315°	360°
y-coordinate on Tangent Line									

5. Examine your graph to state the following characteristics of the graph of y = tanx.

Domain:

In degrees and radians

m degrees and radians

Range:

- Amplitude: Period: x-intercepts:
- 6. Sketch the graph of $y = \tan 2x$, and describe the characteristics.

Domain:

Range:

Amplitude:

Period:

x-intercepts: